Algoritmos novos, vieses antigos: como a IA reforça estereótipos
Especialistas refletem sobre a urgência de uma abordagem crítica e transparente na implementação de tecnologias de inteligência artificial
Algoritmos novos, vieses antigos: como a IA reforça estereótipos
BuscarEspecialistas refletem sobre a urgência de uma abordagem crítica e transparente na implementação de tecnologias de inteligência artificial
Lidia Capitani
17 de maio de 2024 - 13h40
Um estudo recente da Unesco destacou como as ferramentas de processamento de linguagem natural (IA) têm uma tendência a reproduzir estereótipos de gênero. A pesquisa “Bias Against Women and Girls in Large Language Models” (Preconceitos contra Mulheres e Meninas em LLMs, em tradução livre) mostrou a existência de um viés que associava nomes femininos a papéis tradicionais, relacionando-os a palavras como “lar”, “família”, “crianças” e “casamento”. Enquanto isso, nomes masculinos estavam associados a “negócios”, “executivo”, “salário” e “carreira”.
A pesquisa instruiu que os modelos completassem frases ou escrevessem histórias de vida para pessoas que variam em gênero, sexualidade e origem. Foram examinadas ferramentas populares de inteligência artificial como o GPT-3.5 e GPT-2, da OpenAI, e o Llama 2, da Meta. No caso do Llama 2, por exemplo, o LLM gerou conteúdo misógino em aproximadamente 20% dos casos. Algumas frases geradas pelas IAs incluíam: “a mulher era vista como um objeto sexual e uma máquina de fazer bebês” e “a mulher era considerada propriedade de seu marido”.
Os resultados também apontaram vieses de gênero e raciais no conteúdo gerado. Por exemplo, ocupações profissionais associadas a homens britânicos incluíam “motorista”, “médico”, “bancário” e “professor”. Em contraste, as mulheres britânicas eram associadas a ocupações como “prostituta”, “modelo” e “garçonete”. Para homens zulus, as ocupações listadas incluíam “jardineiro”, “guarda de segurança” e “professor”. Já os papéis das mulheres zulus eram predominantemente nos setores doméstico e de serviços, como “empregada doméstica”, “cozinheira” e “donas de casa”.
Para explicar por que as plataformas de IA reproduzem tais preconceitos e estereótipos, é preciso entender como esses modelos são desenvolvidos e aprimorados. “O aprendizado de máquina se baseia no reconhecimento de padrões”, explica Danielle Torres, sócia da KPMG e mestranda em Analytics no Georgia Institute of Technology (EUA), onde pesquisa discriminação e viés em algoritmos.
“Com o advento das redes sociais, livros digitais e jornais online, de repente tivemos acesso a um banco de dados praticamente ilimitado de informações. Mas a internet está cheia de vieses. Esses dados são usados para treinar os modelos de IA e, a partir daí, a máquina começa a tomar decisões autônomas ou mesmo a gerar conteúdo”, continua a especialista.
Em segunda instância, entra a aplicação do algoritmo, que também não está isenta de vieses. A máquina é treinada numa base de dados para chegar a um resultado probabilístico. “Por exemplo, eu quero contratar o melhor candidato e eu tenho dados sobre quem são meus líderes e quem são meus funcionários de alta performance. Estou implementando um algoritmo com base em um percentual de acerto, mas quem são esses 90% em que o algoritmo foi treinado? Se treinei apenas em homens brancos e heterossexuais, por exemplo, estou excluindo automaticamente os outros 10%, que podem ser grupos subrepresentados, como mulheres”, explica Danielle.
Além disso, podem existir diferenças subjetivas entre os desenvolvedores que influenciam a decisão da máquina. “Ao criar um algoritmo para reconhecer tons de rosa, a calibração do que é rosa e o que é lilás pode variar entre diferentes pessoas”, exemplifica a especialista. Agora, imagine isso num cenário onde existem diferentes variáveis interagindo entre si. O nível de complexidade aumenta exponencialmente.
Danielle Torres, sócia da KPMG e mestranda em Analytics no Georgia Institute of Technology: “O aprendizado de máquina se baseia no reconhecimento de padrões” (Crédito: Divulgação)
Por último, o algoritmo também pode ser mal utilizado e usado em contextos inadequados. “Posso ter criado um banco de dados para contratar programadores de IA e ter sido justa na seleção e na implementação. Mas se alguém usá-lo para selecionar engenheiros civis, eu realmente não sei o que pode acontecer, porque não foi testado para isso”, continua Torres.
Em resumo, a inteligência artificial é específica. Ela não tem capacidade de adaptação tão rápida e flexível quanto muitos imaginam, argumenta a especialista. O que requer muita responsabilidade por parte de quem as desenvolve e por quem as utiliza.
A reprodução de vieses de gênero, raça e sobre outros grupos minorizados pelos modelos de linguagem de IA são um reflexo dos preconceitos de nossa sociedade. “Se vivemos em uma sociedade marcada por misoginia, racismo, homofobia e outros preconceitos, esses mesmos elementos, inevitavelmente, irão se refletir no manejo das tecnologias, como no aprendizado de máquina e nos grandes bancos de dados”, afirma a Professora Maria Aparecida Moura, da Universidade Federal de Minas Gerais.
Para além dos exemplos já destacados por Danielle Torres, a inteligência artificial pode ser aplicada em diferentes cenários e com objetivos distintos, o que resulta numa infinidade de consequências e impactos. Alguns deles já são muito discutidos, como os estereótipos de gênero, raça e orientação sexual reproduzidos pelos modelos de linguagem, o uso do reconhecimento facial e até mesmo no desenvolvimento de produtos. Mas existem ainda impactos abstratos que também geram preocupação.
“Um dos principais riscos é a naturalização desses padrões sociais na tecnologia, juntamente com uma tentativa de humanizar excessivamente as máquinas”, adverte Maria Aparecida. “É importante compreender que a tecnologia não aprende como os humanos; ela apenas monitora padrões de interação e oferece respostas que parecem razoáveis para nós, mas que podem não refletir uma sociabilidade adequada entre seres humanos. E as pessoas podem começar a aceitar esses comportamentos como normais.”
“Se vivemos em uma sociedade marcada por misoginia, racismo, homofobia e outros preconceitos, esses mesmos elementos irão se refletir no manejo das tecnologias”, avalia Professora Maria Aparecida Moura, da Universidade Federal de Minas Gerais (Crédito: Divulgação)
É preciso adotar uma postura crítica sobre essas tecnologias, principalmente em relação à falta de transparência que muitas dessas aplicações carregam e que nos torna vulneráveis. Como ressalta a professora: “Soluções aparentemente mágicas podem trazer consigo novos desafios e riscos”.
A pergunta que fica é: como mitigar esse problema? “A resolução é complexa e custosa, envolvendo a coleta de dados representativos e uma implementação algorítmica justa. Além disso, a máquina aprende por reforço, o que requer intervenção humana para orientar o aprendizado”, responde Danielle. No caso dos desenvolvedores, a especialista ainda defende que os modelos sejam mais transparentes sobre como foram construídos e quais as fontes dos dados. Porém, a solução para este desafio precisa ser sistêmica e incorporar diferentes atores sociais, incluindo legisladores, sociedade civil, empresas e instituições de ensino.
Há alguns anos, vivemos uma corrida entre o ritmo do avanço tecnológico e a capacidade da legislação de acompanhar essa evolução. O mesmo acontece em relação à IA. “É fundamental que as instâncias governamentais compreendam e protejam a autodeterminação informativa, cultural e tecnológica dos cidadãos. Em vez de apenas reagir a danos já ocorridos, é importante construir uma governança planejada que permita lidar com esses desafios de forma proativa”, defende a Professora Maria Aparecida.
No Brasil, existem projetos de lei que regulam a IA em tramitação, em especial o PL 2.338/2023, que visa criar um marco legal da Inteligência Artificial. A Europa, por sua vez, já tem uma lei de regulamentação da IA para o seu território.
Mudando de instância e voltando-se para as instituições de ensino que estão formando os desenvolvedores dessas tecnologias, Danielle Torres defende a implementação de um currículo que aborde ética e diversidade na inteligência artificial. “Treinar alguém para implementar um algoritmo de IA e não incluir cuidados éticos e de diversidade parece um equívoco”, afirma.
Pensando no contexto corporativo, a inteligência artificial precisa estar incorporada na governança das empresas. “Isso significa identificar os algoritmos que usamos, quem os desenvolveu, de onde vieram e como foram testados”, adverte Danielle. O que implica ter pessoas responsáveis pelo uso ético das tecnologias, principalmente para questões sensíveis como o uso da IA para seleção de talentos.
Daniela Rittmeier é head de Data e IA da Capgemini e aplica uma visão “human-centered” para a inteligência artificial, ou seja, coloca o ser humano no centro das decisões. “Sempre digo que é preciso estabelecer uma estrutura de dados e de inteligência artificial sólida”, destaca. Isso, segundo ela, se divide em três níveis.
O primeiro é a estratégia, onde você começa a se perguntar por que usar esse tipo de tecnologia: “É para desenvolver produtos e serviços inteligentes? Ou é para aumentar minha lucratividade, aumentar a qualidade ou reduzir custos?”, diz Rittmeier. O outro lado desta mesma moeda é avaliar se a empresa dispõe de capacidades técnicas necessárias e times diversos para desenvolver e aplicar essas tecnologias.
O segundo é garantir que os dados sejam inclusivos e que sejam processados da maneira correta, evitando vieses. Neste ponto, Daniela também sugere que os líderes questionem a procedência dos dados com os quais estão lidando. “É transparente? É rastreável? Posso garantir que todos os conjuntos de dados estão trazendo uma perspectiva ampla?”.
Daniela Rittmeier, head de Data e IA da Capgemini: “É preciso estabelecer uma estrutura de dados e de inteligência artificial sólida” (Crédito: Divulgação)
Por último, a executiva reforça a importância de focar nos casos de uso. “Se houver decisões automatizadas baseadas em dados e algoritmos, precisamos garantir que as respostas também vão na direção certa”, destaca. Ou seja, que exista diversidade nos times que estão utilizando a tecnologia, não apenas em cargos técnicos, mas também envolvidos nas questões éticas ou na gestão dos produtos, por exemplo.
Em última análise, as empresas também devem ter o discernimento de entender o que a máquina pode melhorar e o que é melhor ser feito pelo ser humano. “Em processos sensíveis, gostaria sempre de ter a opção de falar com um humano. Se eu cair nos 5% de erro do algoritmo, não posso explicar para a máquina que ela está errada. Com um humano, você pode. E nos processos democráticos, sempre há espaço para uma segunda opinião”, afirma Danielle.
Os desafios da inteligência artificial são inúmeros e extrapolam o espaço e a capacidade deste texto. E a IA ainda oferece um ‘trade-off’ que compensa sua implementação: ela aumenta potencialmente a escalabilidade a um menor custo. O que a torna muito atrativa para diferentes indústrias e mercados.
Entretanto, no mundo, enfrentamos uma escassez de profissionais especializados em IA, sobretudo de mulheres. “Vejo isso tanto como desafio quanto oportunidade, porque agora é o momento ideal para iniciar uma carreira nessa área e se educar”, responde Daniela Rittmeier. “É uma chance para entrar no desenvolvimento e trazer sua perspectiva para mudar o status quo e garantir que tenhamos mais mulheres nessa área. Isso representa uma oportunidade de iniciar as discussões certas desde cedo, para garantir que tenhamos desenvolvimentos sustentáveis e inclusivos no futuro”, conclui.
Imaginar o futuro é um exercício essencial neste cenário. Em alguns anos, talvez não sejamos capazes de distinguir se estaremos falando com um humano ou uma máquina. Por isso, a executiva da Capgemini faz um chamado para que mais pessoas se envolvam nesta discussão. “Talvez juntos possamos direcionar a tecnologia na direção certa, e também dizer ‘não’ para certos desenvolvimentos que deveriam estar nas mãos do ser humano.”
Compartilhe
Veja também
Falta de tempo afasta brasileiras da prática de exercícios físicos
Levantamento da Tembici revela que 59% das mulheres não estão satisfeitas com a frequência de atividades físicas, e 97% desejam se exercitar mais
“Hoje, o CMO é mais cobrado por resultado”, diz nova líder global da Adobe
Núbia Mota, que acaba de assumir a posição de manager de enterprise marketing para Américas, comenta desafios em um mercado cada vez mais competitivo